A SALUTE to the U.S. NAVY DENTAL SERVICE

from TIC

tic is sent to you with the compliments of your Ticonium Laboratory
Current Projects

Three projects, under way or completed at this writing include the following:

1. dental needs and resources of the eleven western states. A study being made at the request of the Western States Commission for Higher Education, with the cooperation of the Council on Dental Education, American Dental Association, and the W. K. Kellogg Foundation.

2. cost of dental students and dental hygiene students' professional education: a survey being done in cooperation with the American Dental Association and the several dental schools.

3. inventory of dental hygiene, their number, distribution and length of stay in labor market: being compiled at the request of, and in cooperation with, the American Dental Hygienists Association.

Everyone in dentistry has a professional stake in the plans, performance, and achievements of the Division of Dental Resources. Consequently, dentists, dental hygienists, and dental assistants especially—not to mention the manufacturers of dental equipment and supplies—should keep abreast of the Division's projects—projects that are practical and profitable.

NEXT MONTH—PART IV

BRIEF BIOGRAPHY—OF A DENTAL LEADER

Dental Director Walter J. Pelton was born in Cleveland, Ohio, obtained a B.S. degree from Western Reserve University in 1929 and a D.D.S., in 1931. After an internship at the Cleveland Marine Hospital he was commissioned in the U. S. Public Health Service in 1932. Following duty in Public Health Service hospitals in Seattle and New York, and two Coast Guard assignments in Alaska, Doctor Pelton returned to the Graduate School at the University of Michigan, where he obtained a master's degree in public health in 1939.

Except for two years during World War II, when he served at the U. S. Public Health Service Hospital, Manhattan Beach, New York, Doctor Pelton has devoted his time to the promotion of dentistry for children, to public health work, and to field studies relating to dental caries and dental deformities. Since 1951 he has been Chief of the Division of Dental Resources of the PHS Bureau of Medical Services. He is a Fellow of the American College of Dentists and a member of the American Public Health Association; a member of the American Association of Public Health Dentists, on whose executive committee he formerly served, and a member of the American Society of Dentistry for Children. He was the first Secretary and later Chairman of the Dental Health Association, a self-help organization of dental hygienists for children. He is the first Secretary and later Chairman of the Dental Health Association for Children.

His contributions include Delta Upsilon, Delta Sigma Delta, Omicron Kappa Upsilon, and Delta Omegia (PH Foundation). He lives at River Road, Route 1, Rockville, Maryland.

1. DENTAL AND LENGTH

2. DENTAL RESOURCES OF THE VICTIMitized

3. MARKET: being compiled at the request of, and in cooperation with, the American Dental Hygienists Association.

Everyone in dentistry has a professional stake in the plans, performance, and achievements of the Division of Dental Resources. Consequently, dentists, dental hygienists, and dental assistants especially—not to mention the manufacturers of dental equipment and supplies—should keep abreast of the Division's projects—projects that are practical and profitable.

The Constant Plane of Occlusion

A working hypothesis for its recapture in the edentulous state when disease has destroyed the normal conditions

by Frank H. McKevitt, D.D.S.

The constant plane of occlusion will be considered here from the standpoint of a working hypothesis. No one has hitherto treated the subject from that point of view. Yet from this point it presents itself to us as a live issue, in fact the most important of present prostodontic issues. This may serve to indicate the magnitude of evidence with which we must deal in considering the problem which involves the culmination of slow metamorphosis or development of alveolar bone from the sixth year of life to old age. During the sixth year the normal elevations of the plane of occlusion and the normal height of the interlabial creastine space is established by the eruption of the mandibular and maxillary first molars. They are completed during the next twelve years by the staggered eruption of the complete dentition. The occlusal plane sometimes described as the curve of Spee can be readily envisaged in the normal state. When disease processes have altered its normal status, its position as an invisible, though actual geometric entity or plane remains unchanged despite vagaries of its formative agents, the occlusal surfaces of the teeth that have undergone a slow movement which has forced them into odd manners of angular inclinations. For example, a patient with chronic periodontal disease will contribute to slow development are atrophied, staggered extractions, drifting teeth, abrasions, and excollation of teeth. As a corollary, an imbalance usually results and alters the reciprocal dependence of the occlusal plane, the height of the "bite" or the interlabial creastine space, and the temporomandibular articulation which depend one upon the other for equilibrium. Such deviations from the normal plane of occlusion result in increased and diminishing heights of the vertical dimension of the interlabial creastine space. Atrophic changes mark the increases and staggered extractions accent decreases in the space height; variations that signify nature's delight in antitheses.
In this presentation, measured deviations from the norm will be described as extant. As such they must be recaptured accurately at the chair with compound occlusal bite rims rather than with fickle wax. Deviating lateral path movements also follow atrophic changes and staggered extractions, and are manifest in the horizontal plane of occlusion by Gothic arch tracings; the normal angles of which register 60° to the right and left. Abnormal deviations vary from 90° to 94° on the right and left and vice versa.

Variations from the normal Gothic arch tracing should indicate to the discerning operator imbalances in the temporomandibular articulation, the plane of occlusion, and the height of the interalveolar crest line space, which depend on each other for balance. The structural integrity and the clarity of the prosthodontic plan are basic. They should imply a knowledge of the various stages of the work from its beginning to its completion. The initial and second steps involve roentgenologic and study cast interpretations that reveal atrophy and hypertrophy of the alveolar processes which at times require surgical intervention before an impression is taken.

Surgery when it is indicated thus becomes the third step in an orderly prosthodontic procedure. The surgical preparation of the alveolar ridges for the reception of artificial dentures is discussed under a separate caption. At this point it should be apparent that impression-taking which is usually regarded as the initial step in prosthodontic procedure is actually the fourth of a series. The fifth step or link in the prosthodontic chain is the reestablishment of the occlusion and the correct vertical dimension of the interalveolar crest line space, which combines to form with it an integrated balancing unit with the temporomandibular articulation. The elevation of the plane must be reestablished with care in advance of the measured height of the interalveolar crest line dimension.

To accomplish this properly we must clearly visualize the engineering requirements involving the transition from the natural to the arbitrary artificial order. A clear concept should be had of the limitations imposed by its arbitrary recovery.

The natural undulating interproximal curve and its proximal transverse curve of the third step must be reduced to a flattened plane. As a working hypothesis, the plane of occlusion can be visualized, roentgenologically (Fig. 1), and in casts of the jaws (Figs. 2, 5). The accurate recapture of these dimensions is mandatory. Surgical preparation of the ridges for the reception of artificial dentures is implied.

PHS Publication No. 200. From this developed much interest in the students' financial status. (See Current Projects, end of this article.)

(2) Procedures to augment the efficiency of the clinical dental operator through the use of chairside assistants and improved equipment or procedures have been tried in PHS hospitals. Associated with these efforts have been (1) the development and manufacture of an improved dental instrument cabinet (W. D. Allison Company, 1130 Burdul Park- way, Indianapolis, Indiana), (2) the independent establishment of special projects in at least three dental schools to teach dental students the proper use of auxiliary aids for extending dentists' effective- ness to the public. (Annual Report PHS 1950, p. 28 and 1951, p. 29) and (3) experimentation with six radiographic films (instead of the usual eleven or fourteen films customarily used for oral diagnostic purposes). The conclusion reached was that, although the six-film series does not provide sufficient coverage to be useful in clinical practice, the method might be adaptable to mass screening programs or as a relatively inexpensive routine procedure for patients admitted to hospitals for other dental reasons.

Doctor Pelton says of the new cabinet: "Its chief asset are automatic drawers that open and close without the use of unhygienic drawer-pull knobs; a dust-proof interior; and instrument trays and bottle holders of modified design which can readily be cleaned."

(3) The proper construction of dental operatories utilizing gas anesthesia for general anesthesia was investigated and a paper was prepared, "The Dentist and the Explosion Hazard." (J. Oral Surgery, 11:28-35, 1951.)

(4) To facilitate planning for dental care and to catalogue specific types of non-federal dental facilities, a Directory of Dental Clinics in the United States -1954 was prepared. (Mimeographed by Division of Dental Resources, PHS.)

(5) From time to time information relative to dental manpower requirements has been furnished to other governmental units, committees, and commissions. At the request of the Oklahoma State Dental Association and the Oklahoma State Health Department, an investigation of the present dental manpower, population, and economic status was made. Estimates were supplied as to the probable future population-dentist ratio, economic status of the State, and changes that might be expected to influence the problem. Recommendations relative to the State's need for dental training and dental-hygiene training facilities are incorporated in the study, A Study of Oklahoma's Dental Manpower Requirements (published for limited distribution in November 1954). Participation of the American Dental Association in this instance and the W. K. Kellogg Foundation's interest in the general area have led to further studies of this nature. (See Current Projects.)

(6) In attempting to estimate the number of dentists required for adequate management of individuals with dentofacial deformities, a statistical tool needed to apply epidemiologic methods to the problem. Efforts to develop such a tool for determining the incidence and prevalence of dentofacial deformities in large populations has led to a series of four papers under the general title of "Studies of Dentofacial Morphology." (Angle Orthodontist, 21:163-171, 1951; Am. J. Orthod., 39:195-200, 1955; JADA, 6:648-657, Angle Orthodontist, 25:199-207, 1955.)

(7) Using data contained while at the Cleft Palate Center and the Departments of Oral Surgery and Radiology, University of Illinois, one of the staff prepared a report entitled "The Significance of Aridontic Trauma in Orthodontia," published in the Angle Orthodontist, 24:59-69, 1954.

(8) To assess the dental problem of adults and to estimate the requirements which must be met in planning for dental care programs, an investigation was made of the tooth morbidity experience of adults as revealed by nearly a quarter-million dental examinations made during the routine care of certain PHS beneficiaries. The cumulative effect of dental disease with advancing age was interpreted in an article, "Tooth Morbidity Experience of Adults" (JADA, 49:459-465, 1954).
Public Health Service Dentist

by Joseph George Strack

Part 3 of a series

"Every dentist, dental hygienist, and dental assistant will be interested in the work of our Division of Dental Resources," Doctor John W. Knutson, Assistant Surgeon General and Chief Dental Officer of the U. S. Public Health Service, says, explaining: "This division makes studies of ways and means of making better use of existing dental personnel, developing time-saving methods, and otherwise increasing productivity and efficiency in the practice of dentistry. Recent projects of the twenty staff members of this unit included studies of educational resources for dentistry and dental hygiene, methods of increasing the dentist's productivity through the use of multiple chairs, or more assistants, techniques of determining the efficiency of specific dental operations, and developing devices for better recording of dental services and needs."

Pointing out that the Division was set up in September 1949, Doctor Knutson says: "Within the few years it has been in existence, this unit has made a wide variety of first-rate contributions in the dental field, contributions that all of us in dentistry are proud of."

Accomplishments

Doctor Walter J. Pelton, Chief of the Division of Dental Resources, Bureau of Medical Services, United States Public Health Service, lists some of these achievements as follows:

1. In 1950, the Division in cooperation with the Council on Dental Education of the American Dental Association and the American Association of Dental Schools, planned a study of the financial status, faculty patterns, present facilities, and estimated needs for additional facilities in dental and dental hygiene schools in the United States. The PHS's Division of Public Health Methods, which had also conducted a similar study of medical schools, was credited in the report issued in 1952 entitled, Financial Status and Needs of Dental Schools.

Denture Cases Classified

Full artificial denture cases will be described under four separate categories:

Patients about to lose their maxillary teeth. This category pre-extraction casts are mandatory. The distance between the alveolar ridge margins and the maxillary papilla should be accurately recorded. The height of the occlusal plane is fixed by the location of the Papilla Alveolar crest space.

Maxillary full dentures in the first category in which the anterior teeth are to be replaced. Pre-extraction casts are mandatory. The papilla and the median line of the mandibular ridge crest are in view, which prompts the suggestion that in research it is axiomatic that simplicity is the keynote when in search of the obvious. These two points are spanned with dividers and the vertical dimension of 11 mm., is recorded on the cast.

The elevation of the occlusal plane is fixed by the occlusal surfaces of the mandibular teeth. The objective is the identification of the posterior occlusal crest line height.

Second Category

In the second category all maxillary and mandibular teeth are to be removed and replaced artificially. Detailed pre-extraction casts are mandatory as they contain a record of the size, order, and alignment of the maxillary incisors when present. The most significant items contained are records of the extent elevation of the occlusal plane and also the vertical dimension of the extent height of the interalveolar crest line space.

The combined height of the interalveolar crest line space is 11 mm.

FIG. 4. Casts in first category of full denture cases. The compass points over the distance between the alveolus of the maxillary papilla and the ridgecrest in the median line of the mandible. The occlusal plane is determined by the alveolar crest plane level of 11 mm. The elevation of the occlusal plane is 9 mm.

FIG. 5. The mandibular cast and the maxillary occlusal rim indicate the method of determining the extent height of the vertical dimension, which is fixed at 11 mm. The elevation of the occlusal plane is 9 mm.

FIG. 6. Shows reception of correct plane of occlusion and correct height of the interalveolar space without maxillary occlusal rim (shown in Fig. 5). The elevation of the occlusal plane is 9 mm.

FIG. 7. The establishment of the arbitrary maxillary occlusal plane is performed by the tragus line drawn on the face, from the upper border of the external auditory meatus to the side of the nose, and laterally by an imaginary line drawn through the ear tips. The distance is determined from the length of the maxillary central incisor, measured from the line, and paralleled with the tragus side line.

Page Fourteen
tic April 1956

Edentulous Cases, Third Category

Edentulous cases in the third category are usually present for renewal of old dentures. The temptation to increase the height of the central crest dimension for cosmetic effect is irresistible. The better judgment of the operator should prevail as the period of time the dentures had been used and the condition of the temporomandibular articulation should be considered. Muscle tone and atrophic changes have fixed an acquired habitual chewing point to conform with the articulation of the condyles with their menisces. Increasing the height of the excent space is hazardous. An accurate reproduction is indicated. Deviations from this stand depend upon the condition of the edentulous ridges and the need of surgical intervention when and where required. In cases of thin and high ridgeguts that have been reduced it is plain the extent height of the space has been increased. The technical procedure in these cases is to select both dentures in the median line to express the papilla and the mandibular ridges in the median line when the dentures are remade (Continued on Page Twelve).

Dental Wives: Beginning Again

by Kay Lipke

In nearly all families—dental or otherwise—there is one particular time of year when life seems to start over again. A reviving gust of energy sweeps through the household, most of all the home-front wife, electrifying the whole atmosphere. It is then that new ideas spring into being, new decisions are put into operation.

For most people this time seems to be the first of the new year, after the Christmas holidays. In our family, the time is April.

April is a good month to begin again. All about us nature is doing the same, bleaching the drab winter of winter, and bursting into bud and bloom. The air is clean as the finest crystal. Minds partake of that clarity as well. In the world of fashion, April is set aside for an annual transformation in clothing. In religion it is an inspiring time of uplift and rebirth.

And in dentistry? Well, April seems to be a time of rebirth for dentists and their families also. Behind are the grim months of the year when patients are busy with their lives, and work because of holiday expense and activities, and the bills seem to come in much faster than the checks.

All that glauy business is left behind by April, and ahead lie the good months of the year.

In our dental family, we have an annual date to go away by ourselves for a few days in April. The dentist takes care of all the students and school teachers who crowd the office during Easter vacation, and the dental office is set aside for the dental operation, until the patient in the chair finishes airing his views. And many a night he will come home with spirit dragging and nerves crawling up his back after a "political day" at the office.

So, during April we will store up energy for the months ahead. For us no headlines and serious cumbersome thoughts. The big news will be the hillsides covered with wild flowers, the new humming birds' nest outside our window, and how soon will the dinner bell ring. A spring holiday is wonderful therapy.

We will be back in the world of dentistry and politics before the end of the month. In the meantime, Happy April to you!

Page Four

Page Thirteen
appliance. A highly polished, lustrous finish is routinely placed on most dentures, because it is felt that such a finish is the most hygienic. Examined outside of the mouth, a denture with a glossy, light-reflecting surface looks attractive. In the mouth, however, such a denture bespeaks of artificiality and is esthetically displeasing. A surface which has been carefully painted with rag wheels and felt combs is just as hygienic as the polished one, and considerably more esthetic.

There are other reasons why the highly polished acrylic surface should be avoided, particularly on the palatal surface of an upper denture. There is evidence that the non-glossy surface is better tolerated by the patient. Doctor L. G. Jordan states that the palatal surface of a denture should be one of frictional resistance, rather than smooth and highly polished. He reports a case in which nausea disappeared after the high polish was removed from the palatal surface of an acrylic denture. Phenolic is also improved because the tongue, an important instrument in the production of sounds, is a surface, as exemplified in the Tru-Rugae palate. Although the dentist may feel that the primary function of the denture is to restore the patient's ability to masticate food properly and, in the case of the partial denture, to preserve the remaining teeth, many patients seek prosthetic service primarily for cosmetic reasons. The dentist would do well to keep this in mind, for although a denture can be successful from a functional standpoint, it may be a failure in the eyes of the patient due to esthetic shortcomings, real or imagined.

The patient will invariably derive more satisfaction from a personalized denture, so much service should be rendered where it is indicated. In doing so, however, the dentist should remember that the denture will serve as a perpetual advertisement of his professional skill. Thus, characteristic should never be carried beyond the limits of good taste, nor should it be done at the expense of masticatory efficiency.

Leukoplakia of palate with atrophic infiltrating squamous cell carcinoma. Close observation will reveal an elevated ridge.

ORAL CANCER

by Joseph Murray, D.D.S.

PART 4

Etiology of Mouth Cancer

Although the fundamental cause of cancer in any part of the body has never been established, it is believed that chronic irritation, tobacco, avertising, syphilis, some dental disorders, and ill-fitting dentures are stimulating or predisposing factors. It is common knowledge that outdoor workers, like farmers, sailors, and lumbermen, show a high incidence of skin and lip cancer because of prolonged exposure to the sun. However, the time and duration of the irritation in addition to the patient's susceptibility are the important considerations.

Some clinicians feel that individuals with a fair or ruddy complexion are more susceptible. Others are of the opinion that certain individuals smoking leads to the development of leukoplakia, which at times undergoes malignant change.

In former years, the heat generated by the clay pipe was believed to contribute to mouth cancer. The modern pipe smoker, however, appears to have adequate insulation against thermal irritation.

Frequent burns and concentrated doses of tobacco tars are the apparent cause of oral malignancy in certain Indian tribes who smoke cigarettes with the lighted end in the mouth. Also, in some parts of the Orient and the Philippines, the betel nut-tobacco chewing native often develops a malignant neoplasm in the buccal/cingivarial sulcus where the "chew" is kept, especially if he lives on an inadequate diet.

In most cases of mouth cancer, however, evidence of more than one form of chronic irritation can be found. Therefore, it is erroneous to ascribe the lesion in any given case to tobacco alone simply because the brushes that were pointed with their lips.

What role does tobacco play as a causative agent in the production of cancer? A recent study by Doctors E. C. Hammond and Daniel Horn of the American Cancer Society indicated that regular cigarette smokers had a higher death rate from cancer of sites other than the lung, than did men who never smoked. And Doctor Alton Ochsner of New Orleans predicted that one of every ten male cigarette smokers will have cancer by 1970.

Other authorities are of the opinion that in certain individuals smoking leads to the development of leukoplakia, which at times undergoes malignant change.

In former years, the heat generated by the clay pipe was believed to contribute to mouth cancer. The modern pipe smoker, however, appears to have adequate insulation against thermal irritation.

Frequent burns and concentrated doses of tobacco tars are the apparent cause of oral malignancy in certain Indian tribes who smoke cigarettes with the lighted end in the mouth. Also, in some parts of the Orient and the Philippines, the betel nut-tobacco chewing native often develops a malignant neoplasm in the buccal/cingivarial sulcus where the "chew" is kept, especially if he lives on an inadequate diet.

In most cases of mouth cancer, however, evidence of more than one form of chronic irritation can be found. Therefore, it is erroneous to ascribe the lesion in any given case to tobacco alone simply because the brushes that were pointed with their lips.
person smokes. Further investigation often proves that the patient also has syphilis or oral mucous membranes.

Vitamin B deficiency are many and varied, but among the more prominent is chronic inflammation of the oral mucous membranes.

In Sweden a highly precancerous condition known as leukoplakia--characterized by anemia, difficulty in swallowing and atrophy of the mucous membrane of the mouth and the pharynx--often affects women and predisposes them to mouth cancer from which they are usually immune. In this category may be included workers in the "lower" socio-economic group who may be living on sub-standard diets or who may be lacking in cancer-detection education. At any rate, oral and skin malignancy mortality in general was twice as high in the unskilled as in the professional workers in 1944, according to Doctor M. L. Levin.

A frequent source of chronic irritation within the mouth is luetic glossitis. Before the advent of the antibiotics, according to Doctor M., the mortality in general was twice as high in the unskilled as in the professional workers in 1944.

Glossitis and stomatitis may also be due to the presence of dissimilar metals like gold and silver, might be an etiologic factor. This, however, seems highly improbable.

As for the presence of dental disorders, like caries, sharp or broken teeth or periodontostasis—these are seldom considered factors in the production of chronic irritation and eventual mouth cancer. As a matter of fact, in the Head and Neck Clinic at the Memorial Hospital, New York City, Doctor Martin reports that more than one half of the patients who have reached the age of sixty are completely edentulous.

Regarding the belief that ill-fitting dentures are a cause of mouth cancer, it is significant that in a large majority of such cases the lesion is found to be situated in adjacent sites but not in direct contact with the restoration. On the other hand, it is entirely possible that the growing malignancy is contributing to the poor fit of a previously well-adapted denture.

BIBLIOGRAPHY

The dentist who desires to match the coloration of the patient's tissues to an even greater degree may do so by altering the color of stock acrylic shades. This is accomplished by the mixing of inorganic mineral pigments with standard denture base shades. For example, red Spanish oxide, which is a brownish red pigment, well-pigments, a lifelike color pigment added in small amount to regular pink acrylic colors. Mercurochrome, a vermilion pigment which produces a bright red in combination with pink plastic, may be used to reproduce red arteriole lines. Various other pigments may be mixed to produce different effects that stimulate natural tissue color.

To further enhance the natural appearance of the denture base, consideration should be given to color variations in the same mouth as well as the general coloring of the tissues. The shade and color of the oral mucosa often varies from one area to another, so that there is seldom a uniform color throughout. By the use of appropriate shades and various shades of denture base acrylic, it is possible to reproduce the mottled effect of the tissues.

Anteriorly, the mouth must be studied preoperatively, as many of the color markings are lost after the teeth are extracted. Doctor V. G. Hull holds that the subject is to duplicate the coloring of the normal and healthy dentition rather than the coloring of the edentulous mouth. A sketch indicating the location and extent of color markings of the mucosa is a pre-extraction record that will be of value in reproducing the tissue motting.

Denture Surface Finish

The type of finish on the acrylic denture surface is an important factor in producing a more esthetic
Denture Characterization

by Cyril B. Kanterman, D.D.S.

PART 3: Denture Base Characterization

(Final article in a series)

Until the introduction of the acrylic resins in America in 1937, characterization of the denture base was the responsibility of the dental technician. Since then, however, the introduction of acrylic resins as denture base materials has given the dentist a much greater role in the restoration of the appearance of the oral soft tissues. During this period, a number of synthetic resins have been developed which have been used as denture base materials, but they were invariably subject to warpage, discoloration, or some other undesirable characteristic. Thus, despite its poor esthetic quality, vulcanite remained the denture base material of choice for over seventy-five years.

To offset this disadvantage, it was the practice to keep the denture base out of sight, and instead, alter the teeth to produce a more pleasing initial appearance. This procedure was good psychology, for it tended to focus attention on the denture teeth rather than the denture base. Yet, in spite of the inconvenience caused by duplicating the patient's own natural tissue conformation, there was a psychological benefit derived from the reproduction of rugae and other palatal features on the denture. The patient experiences more confidence and comfort with his denture when his tongue contacts familiar tissue configuration.

Rugae and incisive papilla may be reproduced on the acrylic denture by using stock rugae forms, but by duplicating the patient's own rugae on his denture the prosthesis is personalized in a real sense. Doctor R. O. Schlesser gives a technique by which this may be easily accomplished. A piece of 0.003 inch tin foil is molded over the palatal surface of the master model. The depressions on the tissue side of the foil are filled in with molten wax, and this is fused in position on the waxed-up case prior to flasking.

Tru-Rugae

The reproduction of rugae and other palatal tissue detail is no less important for the partial denture casting than for the full acrylic denture, although poorly contoured palatal surfaces have been the rule rather than the exception in denture service over the years. Tru-Rugae represents the original technique of duplicating tissue detail on the upper partial or full palate casting in chrome-coal alloy. Not only is the rugae area of the palate reproduced in the Tru-Rugae technique, but also the natural surface appearance of labiobucal tissues.

Gingival recession

Vascular appearance of labiobucal tissues

Gingival recession

SELECTION OF DENTURE BASE COLOR

Color matching with tissue

Moistening

DENTURE SURFACE FINISH

Non-glaze surface

Stippled surface

Reproduction of Anatomic Features

An important characterization procedure for the denture base is the reproduction of a natural palatal tissue surface, particularly the reproduction of the patient's rugae formation. There are several reasons why this is important. The rugae are irregularly shaped rolls of soft tissue which together with the incisive papilla comprise the most prominent anatomic feature of the anterior portion of the palate. The rugae contribute to phonetics, assisting in the formation of sounds such as the letter "S." They play no small part in mastication, providing a washboard surface over which the softer food particles are pressed out by the tongue and mixed with saliva.

Finally, there is a psychological benefit derived when the rugae are reproduced on the denture. The patient experiences more confidence and does not feel quite so alien to his denture when his tongue contacts familiar tissue configuration. Rugae and incisive papilla may be reproduced on the acrylic denture by using stock rugae forms, but by duplicating the patient's own rugae on his denture the prosthesis is personalized in a real sense. Doctor R. O. Schlesser gives a technique by which this may be easily accomplished. A piece of 0.003 inch tin foil is molded over the palatal surface of the master model. The depressions on the tissue side of the foil are filled in with molten wax, and this is fused in position on the waxed-up case prior to flasking.
The Loyola University School of Dentistry was founded in 1914 as a part of Loyola University at New Orleans. The dental school has expanded consistently over the years until today every department has its own clinical laboratory space.

In 1950 the Edward G. Schlieder Educational Foundation provided a grant which made it possible to develop a children's dentistry department, and keen interest has developed in this field.

The records show that 90 percent of the Louisiana students enrolled in dental schools are studying at Loyola. Doctor Frank J. Houghton is the distinguished dean of the dental school.